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ABSTRACT
From a physical perspective, the native structure of a protein is a
consequence of physical forces acting on the protein and solvent
atoms during the folding process. From a biological perspective,
the native structure of proteins is a result of evolution over millions
of years. Correspondingly, there are two types of protein structure
prediction methods, de novo prediction and comparative modeling.
We review comparative protein structure modeling and discuss the
incorporation of physical considerations into the modeling process.
A good starting point for achieving this aim is provided by com-
parative modeling by satisfaction of spatial restraints. Incorporation
of physical considerations is illustrated by an inclusion of solvation
effects into the modeling of loops.

Introduction
Three-dimensional (3D) structure of natural proteins is
guided by two distinct sets of principles operating on
vastly different time scales: the laws of physics and the
theory of evolution (Figure 1). On one hand, according to
the laws of physics, a protein molecule in solution is a
system of atoms that interact through a variety of forces,
such as chemical bonds, hydrogen bonds, Coulomb

interactions, and Lennard-Jones forces. Under appropriate
conditions, these forces fold almost any random starting
conformation of a protein into a stable, well-defined 3D
structure (i.e., the native state) in a matter of milliseconds
or seconds. On the other hand, over millions of years,
evolution resulted in families of proteins that share similar
sequences, similar structures, and often related functions.
Different proteins evolved through duplication, speciation,
and horizontal transfer, followed by accumulation of
mostly neutral mutations. In evolution, a protein changes
gradually because it usually needs to retain its function,
which requires the conservation of its structure and
therefore also its sequence.1

Each of the two sets of principles that apply to the
natural protein sequences gave rise to a class of protein
structure prediction methods.2 The first approach, de novo
or ab initio methods, predicts the structure from sequence
alone, without relying on similarity at the fold level
between the modeled sequence and any of the known
structures.3 The de novo methods assume that the native
structure corresponds to the global free energy minimum
accessible during the lifespan of the protein and attempt
to find this minimum by an exploration of many conceiv-
able protein conformations. The two key components of
the de novo methods are the procedure for efficiently
carrying out the conformational search and the free energy
function used for evaluating possible conformations. The
second class of methods, including threading and com-
parative modeling, rely on detectable similarity spanning
most of the modeled sequence and at least one known
structure.4,5 When the structure of one protein in the
family has been determined by experiment, the other
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members of the family can be modeled on the basis of
their alignment to the known structure.

It is useful to describe de novo prediction and com-
parative modeling within the same conceptual framework.
Any protein structure prediction method can be seen as
an optimization of a protein structure model with respect
to a certain objective function.6 The methods differ in the
function optimized, in the model representation (includ-
ing the degrees of freedom), and in the method of
optimization (including the starting conformation). The
individual terms of the objective function, such as Cou-
lomb interactions in a molecular mechanics force field or
side-chain dihedral angle restraints in comparative mod-
eling, correspond to the individual spatial restraints. In
this view, de novo methods attempt to find the most likely
structure of a protein sequence given the forces between
its atoms, while the comparative methods attempt to find
the most likely structure of a protein sequence given
primarily its relationship to the known similar structures.
When the aim is to obtain the most accurate protein
structure prediction, protein modeling by satisfaction of
spatial restraints provides a framework for incorporating
all spatial information about a given protein sequence,
irrespective of its origin, be it physics-based, homology-
based, or derived by experiment.

In this perspective, we begin by describing the essential
features of comparative protein structure prediction. We
introduce our approach to comparative modeling by
satisfaction of spatial restraints derived mainly from the
alignment of the modeled sequence with related protein
structures. We then generalize this approach to spatial
restraints from arbitrary sources and continue by explor-
ing physical considerations in comparative modeling.
Finally, we finish by describing our initial effort to include
solvation effects into the modeling of loops.

Comparative Modeling and Threading
Modeling of a sequence on the basis of known structures
generally consists of four steps: finding known structures
related to the target sequence to be modeled (i.e., tem-
plates); aligning the sequence with the templates; building
a model; assessing the model.5 In this section, we list
various comparative modeling approaches, errors in the
resulting models, and their applications. We also point
out the recent trends in large-scale comparative modeling
of whole genomes and all known protein sequences.

The 3D structures of proteins from the same family are
more conserved than their primary sequences.1 Therefore,
if similarity between two proteins is detectable at the
sequence level, structural similarity can usually be as-
sumed. Moreover, proteins that share low or even non-
detectable sequence similarity often also have similar
structures. The templates for modeling may be found by
sequence comparison methods, such as PSI-BLAST,7 or
by sequence-structure threading methods8 that can
sometimes reveal more distant relationships than purely
sequence-based methods. In the latter case, fold assign-
ment and alignment are achieved by threading the
sequence through each of the structures in a library of all
known folds that are representative of the Protein Data
Bank (PDB) of all available protein structures.9 Each
sequence-structure alignment is assessed by the energy
of a corresponding coarse model and not by sequence
similarity as in sequence comparison methods. While
threading methods find known structures related to the
input sequence and in the process also calculate an
alignment between them, they do not result in an explicit
atomic model of the sequence.

Comparative structure prediction produces an all-atom
model of a sequence, based on its alignment to one or
more related protein structures. Comparative model
building includes either sequential or simultaneous mod-
eling of the core of the protein, loops, and side chains. In
the original comparative approach, a model is constructed
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FIGURE 1. De novo structure prediction and comparative protein structure modeling. Proteins obey two distinct sets of principles, the laws
of physics and the theory of evolution, each giving rise to the corresponding variety of protein structure prediction methods.
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from a few template core regions and from loops and side
chains obtained from either aligned or unrelated struc-
tures.4,10,11 Another family of comparative methods relies
on approximate positions of conserved atoms from the
templates to calculate the coordinates of other atoms.12,13

A third group of methods uses either distance geometry
or optimization techniques to satisfy spatial restraints
obtained from the sequence-template alignment.14-16

There are also many methods that specialize in the
modeling of loops17-19 and side chains20,21 within the re-
strained environment provided by the rest of the structure.

The accuracy of comparative modeling is correlated
with the percentage sequence identity on which the model
is based, mimicking the correlation between the structural
and sequence similarities of two proteins.1,5,22 Errors
include mistakes in side-chain packing, relatively small
shifts and distortions in correctly aligned regions, errors
in the unaligned regions (i.e., loops), alignment errors, and
fold assignment mistakes. The alignment errors increase
rapidly below 30% sequence identity and become the most
significant origin of errors in comparative models. Errors
in comparative modeling and threading are best quanti-
fied by continuous, automated, and large-scale assessment
of automated prediction methods, such as that imple-
mented by the LiveBench23 and EVA web servers.24

Reasonable applications of any protein structure model
depend on its accuracy, and even models with large errors
can be helpful.4,5 Comparative models have been used in
studying catalytic mechanisms of enzymes, designing and
improving ligands, docking of macromolecules, predicting
interacting protein partners, virtual screening and docking
of small ligands, defining antibody epitopes, molecular
replacement in X-ray crystallography, designing chimeras,
stable and crystallizable variants, supporting site-directed
mutagenesis, refining NMR structures, fitting proteins into
low-resolution electron density maps, finding functional
sites by 3D motif searching, determining structure from
sparse experimental restraints, annotating function from
structural relationships, and finding patches of conserved
surface residues.5

While the models can provide substantial insights, they
can also be misleading. Thus, it is necessary to estimate
the accuracy of a model before it is used. The accuracy of
a comparative model can be estimated simply from
sequence similarity to its template or more generally by
a variety of model assessment methods.25-27

Domains in approximately half of all 600 000 known
protein sequences were modeled with ModPipe,22 relying
on PSI-BLAST7 and MODELLER,15 and deposited into a
comprehensive database of comparative models, ModBase
(http://guitar.rockefeller.edu/modbase/).28,29 While the
current number of modeled proteins may look impressive,
usually only one domain per protein is modeled (on the
average, proteins have slightly more than two domains)
and two-thirds of the models are based on less than 30%
sequence identity to the closest template. The web
interface to ModBase allows flexible querying for fold
assignments, sequence-structure alignments, models, and
model assessments of interest. An integrated sequence/
structure viewer, ModView, allows inspection and analysis
of the query results.66 ModBase will be increasingly
interlinked with other applications and databases such
that structures and other types of information can be
easily used for functional annotation.

The usefulness of comparative modeling is steadily
increasing because the number of different structural folds
that proteins adopt is limited and because the number of
experimentally determined new structures is increasing
rapidly.30 This trend is accentuated by the recently initi-
ated structural genomics project that aims to determine
at least one structure for most protein families.31 It is
conceivable that structural genomics will achieve its aim
in 5-10 years, making comparative modeling applicable
to most protein sequences.

Comparative Modeling by Satisfaction of
Spatial Restraints
We developed an automated approach to comparative
protein structure modeling that is based on satisfaction

FIGURE 2. Comparative protein structure modeling by satisfaction of spatial restraints. First, spatial restraints are extracted from the input
alignment, spatial preferences found in known protein structures, and a molecular mechanics force field. Second, all the restraints are combined
into an objective function that is optimized to obtain the final model.
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of spatial restraints15,17 (Figure 3). It is implemented in the
computer program MODELLER, which is freely available
to academic researchers via the web at http://guitar.rock-
efeller.edu. In this section, we describe briefly the spatial

restraints imposed on the target sequence and the opti-
mization procedure that minimizes violations of the
restraints to obtain a 3D model.

In the first step of model building, spatial restraints on
the target sequence are calculated. In general, restraints
are expressed as conditional probability density functions
P(f/I) (pdf’s) for the restrained spatial feature f, given
several variables I that were found to be most predictive
of the restrained feature. There are three types of a
restraint, depending on the origin and nature of informa-
tion I.

First, restraints are obtained for those target residues
that are aligned with template residues. These homology-
derived spatial restraints limit distances among the main-
chain and side-chain atoms, as well as main-chain dihe-
dral angles Φ, Ψ, and Ω and side-chain dihedral angles
øi. The form of these restraints was obtained from a
statistical analysis of 105 family alignments that included
416 structurally defined proteins.32 For example, a restraint
on a certain CR-CR distance given equivalent distances
in two related protein structures is described well by a
weighted sum of two Gaussian functions corresponding
to the two template distances, respectively (cf. the histo-
gram in Figure 2).

The second class of restraints reflect statistical prefer-
ences extracted from known protein structures in general
and are related to the statistical potentials of mean
force.33-36 The restraints depend only on the types of the
restrained atoms or residues and not on the template
structure. These restraints are applied to the main-chain
and side-chain dihedral angles of target residues that are
not aligned with template residues (i.e., in an inserted
loop) and to distances between all nonbonded atom pairs.
They are used because they were found to result in more
accurate models than the corresponding terms from a
molecular mechanics force field.17

The third type of a restraint is obtained from the
molecular mechanics force field of CHARMM-2237 and
includes restraints on chemical bonds, angles, and im-
proper dihedral angles. These molecular mechanics re-
straints enforce proper stereochemistry of the model.

After all pdf’s are calculated, their logarithms are
summed to obtain an objective function that depends on
the model and gives its likelihood (see the equation
below). Finally, the model containing all non-hydrogen
atoms is calculated by optimizing the objective function
in Cartesian space. The optimization is carried out by the
variable target function method employing conjugate
gradients and molecular dynamics with simulated an-
nealing.

Protein Structure Modeling by Satisfaction of
Spatial Restraints
We now describe the modeling approach implemented
in MODELLER from a broader perspective; we outline how
different kinds of spatial information can be used for
protein structure prediction in general and not only for
comparative modeling.

FIGURE 3. Loop modeling of the region 69-73 in P. aerophilum
manganese superoxide dismutase. The target sequence is related
strongly at 56% sequence identity to the template structure of S.
sulfolobus iron superoxide dismutase, 1SSS (blue). The model (red)
was constructed before the actual structure (target T0128 at CASP4)
was defined by X-ray crystallography (green). The segment to be
modeled de novo was identified from the divergence in sequence
and structure among its three closest homologues of known
structure. The loop model is significantly closer to the actual
structure (the global main-chain rms error is 1.28 Å) than the best
available template loop (2.69 Å). The loops are oriented by the
superposition of the whole structures. Key: (a) CR trace of the
5-residue loop spanned by the two stem regions, for the model, the
actual structure, and the template; (b) all-atom representation of the
loop residues in the model and the actual structure.
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A 3D model of one or more molecules is obtained by
minimizing the objective function F with respect to
Cartesian coordinates of atoms R:

where Pi is a conditional probability density function for
a geometric feature fi that depends on information Ii, Ei

is the corresponding energy term, and ai are parameters
that generally vary from a term to a term and are related
to Ii. If the individual pdf’s were statistically independent
from each other, F(R) would be the negative logarithm of
the probability density of conformation R. If the individual
energy terms Ei were additive, F(R) would be the energy
of conformation R. Clearly, the pdf and energy terms are
related, Ei ) -ln Pi. The terms probability and energy are
used loosely, without specifying the proportionality fac-
tors, the thermodynamic ensemble, or the type of energy.

Both the Pi and Ei terms can be seen as spatial
restraints. For example, the “statistical” definition of
restraints in terms of pdf’s Pi is convenient when restraints
are derived from a database of known related structures,
and the “physical” definition of restraints in terms of the
energy terms Ei is convenient when restraints are derived
from the CHARMM force field. Although the statistical and
physical definitions are equivalent, it may be easier to
arrive at the correct restraint form using one or the other
definition.15

In a typical comparative modeling calculation, there
are on the order of 5000 atoms and 40 000 restraints. The
form of Ei is simple; it can be a quadratic function, cosine,
logarithm of the weighted sum of a few Gaussian func-
tions, Coulomb law, Lennard-Jones potential, cubic spline
function, and some other simple forms. The geometric
features presently include a distance, an angle, a dihedral
angle, and a pair of dihedral angles between two, three,
four, and eight points, respectively. Points correspond
either to real atoms or to pseudoatoms, such as a gravity
center of several real atoms. A pair of dihedral angles can
be used to restrain simultaneously such strongly correlated
features as the main-chain dihedral angles Φ and Ψ of
the same residue. Most terms in the CHARMM energy
function are implemented in MODELLER. Molecular
representations that correspond to any subset of an all-
atom topology library of CHARMM (e.g., all-atom, non-
hydrogen atoms, CR-only) as well as a simplified side-
chain model can be used.

Perhaps the main technical limitations presently are
that the individual restrained features depend on a small
number of atoms and that the first derivatives of the
restraints with respect to Cartesian coordinates be calcu-
lated rapidly. These limitations make it difficult to opti-
mize a model with respect to, for example, some repre-
sentations of implicit solvation.

Combining Physics and Evolution To Improve
Protein Structure Prediction
The similarity between the local fluctuations around the
native state and the structural differences among the

native structures of homologous proteins38 suggests that
accurate molecular dynamics simulations should improve
the relatively inaccurate comparative models obtained
with the existing methods. This hope is underpinned by
the recent improvements in molecular mechanics force
fields37,39,40 and the ever increasing time scale of the
molecular dynamics simulations.41 Nevertheless, attempts
to improve comparative models by molecular dynamics
simulations have not yet been successful.42

A general approach to improving comparative model-
ing by physics-derived information is to add a physically
correct model of interactions among atoms to the objec-
tive function that guides construction of a comparative
model. The main role of the homology-derived terms in
such an objective function would be to provide a suitable
starting conformation and to restrain the conformational
search to a manageable and relevant portion of the phase
space, while the main role of the physical terms would
be to allow the refinement of the model away from the
template structure toward the actual structure of the
target. Achieving a sufficient accuracy and a productive
balance between these two types of a restraint is highly
nontrivial, as evidenced by the difficulty of refining
comparative protein structure models.15,42 The emphasis
on the objective function is justified because there is
strong anecdotal evidence that the prediction accuracy is
often limited by the accuracy of the energy function15,17

and possibly by the accuracy of the corresponding protein
and solvent representations. Thus, in the next three
paragraphs, we comment on the current accuracy of the
terms that describe local stereochemistry, nonbonded
interactions between protein atoms, and nonbonded
interactions between protein and solvent atoms (i.e.,
solvation effect).

Comparative methods use restraints on chemical bonds,
bond angles, and dihedral angles that usually originate
from a molecular mechanics force field or from general
statistical preferences extracted from many known protein
structures. It appears that these features of a protein are
restrained with sufficient accuracy and do not require
additional attention.

Comparative methods also generally apply nonbonded
restraints on the protein atoms. These restraints are
typically adopted from a molecular mechanics force field
(e.g., Lennard-Jones interactions) and sometimes from
statistical preferences obtained from known protein struc-
tures (e.g., atomic statistical potentials of mean force). For
example, statistical potentials of mean force have been
used successfully to assess comparative models,26 to
improve the accuracy of loop models,17 and to improve
the overall model accuracy.16,27,43 In contrast to the
sequentially local restraints, however, the nonbonded
interactions between protein atoms are probably not
modeled sufficiently accurately and their description
needs to be improved.

And finally, comparative modeling lags significantly
behind the state of the art in the description of solva-
tion.44-52 In fact, comparative methods generally do not
even attempt to model solvation effects. There are only a

F(R) ) -ln ΠPi(fi/Ii) ) ΣEi(fi, ai)
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few studies that included solvation into assessment of
models53,54 and loop modeling.55-58 Thus, it is most
desirable to add to comparative modeling an accurate
model of nonbonded interactions between the protein and
solvent atoms.

Loop Modeling
In this section, we describe our preliminary results on
using an implicit solvation model to improve the modeling
of loops in protein structures, after we introduce the
problem of loop modeling and our existing approach
implemented in MODELLER.

Errors in loops are the dominant problem in compara-
tive modeling above 35% sequence identity. In this range
of overall similarity, loops among the homologues vary
while the core regions are still relatively conserved and
aligned accurately. There are two approaches to loop
modeling.17 First, the ab initio loop prediction is based
on a conformational search or enumeration of conforma-
tions in a given environment, guided by a scoring or
energy function. There are many such methods, exploiting
different protein representations, energy function terms,
and optimization or enumeration algorithms.17,57,59 The
second, database approach to loop prediction begins by
finding segments of main chain that fit the two stem
regions of a loop.11,13,19,60 The search for such segments is
performed through a database of many known protein
structures and not only homologues of the modeled
protein. The selected segments are then superposed and
annealed on the stem regions and finally ranked according
to some rule or a scoring function.

The loop modeling module in MODELLER implements
the optimization-based approach.17 The main reasons are
the generality and conceptual simplicity of energy mini-
mization, as well as the limitations imposed on the
database approach by a relatively small number of known
protein structures.61 The method was tested on a large
number of loops of known structure, both in the native
and near-native environments. Loops of 8 residues pre-
dicted in the native environment have a 90% chance to
be modeled with useful accuracy (i.e., rms error for
superposition of the loop main-chain atoms is less than
2 Å). Even 12-residue loops are modeled with useful
accuracy in 30% of the cases. It is possible to estimate
whether a given loop prediction is correct, based on the
structural variability of the independently derived lowest
energy loop conformations. The method has been applied
successfully in blind predictions of protein structure at
meetings on critical assessment of protein structure
prediction methods (CASP) 3 and 4 (Figures 3 and 4).

The current loop modeling method in MODELLER
includes the solvation effect only indirectly, through the
statistical potential of mean force used to restrain the
nonbonded contacts between protein atoms. Since the
environment of most loops is significantly solvent ex-
posed, we aimed to improve loop modeling by including
a more accurate description of the interactions between
the protein and the solvent.

The solvent could be taken into account explicitly by
immersing the modeled loop into a bath of water mol-
ecules. However, this model representation would result
in too costly an optimization, especially when many loop
predictions need to be done, as in genome-scale com-
parative modeling. The large number of particles in the
model would increase both the time required for a single
function evaluation and the number of function evalua-
tions needed for a given degree of optimization. This
problem is significantly reduced when implicit solvent
models based on approximate analytic solutions to con-
tinuum solvation theories are used.45 As a result, we began
exploring implicit solvation models instead of explicit
solvent representations. In particular, we focused on the
generalized Born (GB) approximation implemented in the
CHARMM molecular mechanics and modeling pack-
age.37,48,62 This approach has been demonstrated to assist
in distinguishing native structures from misfolded de-
coys.63

The new protocol for modeling a given loop sequence
was implemented using the multiscale modeling tools for
structural biology (MMTSB, http://mmtsb.scripps.edu)
and proceeds as follows.64,65 First, 49 loop conformations
were generated with MODELLER,17 without any solvation
terms. Next, the 49 conformations were minimized by

FIGURE 4. Loop modeling of the region 46-53 in S. pombe
contractile ring protein Cdc4p. The target sequence is related
remotely at 33% sequence identity to the template structure of A.
irradians myosin, 1WDC (blue). The model (red) was constructed
for CASP3 before the actual structure (1GGW) was defined by X-ray
crystallography (green).65 The 8-residue loop prediction has the global
and local main-chain rms errors of 3.64 and 1.36 Å, respectively.
The loops are in thick lines and are shown upon superposition of
the whole structures.
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CHARMM with respect to the standard PARAM19 force
field and the generalized Born approximation to solvation,
as well as harmonic restraints with force constants of 0.1
and 1 kcal/mol applied to the protein atoms within 9 Å
of the loop atoms and to protein atoms 9-12 Å from the
loop atoms, respectively (CHARMM/GB energy). The
system was relaxed by 50 steps of the steepest descent
minimization, followed by a more aggressive adopted
basis Newton-Raphson minimization of up to 2000 steps
or until the energy decrease between the steps became
less than 10-4 kcal/mol. The 49 relaxed conformations
were ranked by the CHARMM/GB energy.

At least for 8-residue loops, the new protocol is justified
because MODELLER almost always produces at least a few
accurate conformations in 49 independent runs. When
MODELLER loop prediction fails, it fails because the
MODELLER objective function is not able to identify the
correct conformation and not because the optimizer is
unable to sample it. We hoped that the CHARMM/GB
energy function would improve identification of the best
conformation among the 49 alternatives generated by
MODELLER.

The accuracy of the new protocol was tested by
modeling 39 of the 40 different 8-residue loops extracted
from high-resolution protein structures.17 Minimization
of the CHARMM/GB energy of a MODELLER loop model
usually does not move the loop by more than 2 Å (Figure
5). In 55% of the 1910 individual runs (39 loops times 49
runs/loop), minimization of the CHARMM/GB energy
improved the accuracy of the initial MODELLER model.
For the initial MODELLER loops that had the global main-
chain rms error better than 5 Å and the local rms error
better than 2 Å, the fractions of the MODELLER models
improved by minimization of the CHARMM/GB energy
were 57 and 63%, respectively. A global rms error is
obtained by superposing the three stem residues on each
side of a loop, whereas the local rms error is obtained by
superposing the loops only. Refinement by minimization
of the CHARMM/GB energy was particularly effective in
improving relatively inaccurate initial models (global
main-chain rms error > 2.0 Å) (Figure 6). In contrast, if
MODELLER produced a relatively accurate model, mini-

mization of the CHARMM/GB energy tends to slightly
increase the error of the optimized model (Figure 6). A
small but probably significant improvement is also ob-
served in the ranking of loop conformations on the basis
of the CHARMM/GB energy relative to that on the basis
of the MODELLER energy. The average main-chain rms
error of the best scoring models improved from 2.36 to
1.87 Å for global superposition and from 1.29 to 1.07 Å
for local superposition (Figure 7).

Conclusions
The accuracy of comparative modeling is likely to be
improved by an explicit consideration of the physical
energy terms, especially of the solvation effect. We suggest
to express both the comparative modeling rules and the
energy terms as spatial restraints, combine them into a
single objective function, and calculate a model by
optimization of this function. The main role of the
homology-derived terms in such an objective function
would be to provide a suitable starting conformation and
to restrain the conformational search to a manageable and
relevant portion of the phase space, while the main role
of the physical terms would be to allow the refinement of
the model away from the template structure toward the
actual structure of the target. These ideas are illustrated

FIGURE 5. Magnitude of conformational change upon refinement
of a MODELLER loop model with respect to the CHARMM/GB energy
function. The distribution is shown for the 1910 refinements,
corresponding to the 49 MODELLER runs for each of the 39 loop
sequences.

FIGURE 6. Success of refinement as a function of the initial model
accuracy. The refinement ratio is defined as the ratio between the
main-chain global rms errors of the refined and the initial loops.
The distribution is shown for all of the 1910 refinements. The error
bars indicate the standard error of the mean.

FIGURE 7. Correlation between the accuracy of the best scoring
MODELLER and CHARMM/GB predictions. The scatter plot is shown
for the 39 8-residue test loops.
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by preliminary results from a loop modeling protocol that
relies on the generalized Born approximation to solvation.
Given a reasonable starting loop conformation and its
environment produced by comparative modeling, a physi-
cal energy function with the generalized Born term forces
the starting structure closer to the actual structure. In
addition, the physical energy function is capable of
ranking an ensemble of loop conformations more ac-
curately than the comparative modeling objective function
used to derive these conformations. These improvements
encourage us to continue exploring different solvation
models and optimization protocols for refining and rank-
ing loop conformations as well as whole protein struc-
tures.

We are grateful to the members of our group for discussions
about protein structure prediction. Research was supported by NIH
Grant RR12255 (C.L.B.) and by NIH/GM Grant 54762, a Merck
Genome Research Award, and a Mathers Fund Award (A.S.). A.F.
was a Burroughs Wellcome Fund Postdoctoral Fellow and is a
Charles Revson Foundation Postdoctoral Fellow. A.S. is an Irma
T. Hirschl Trust Career Scientist. This perspective is based partly
on previous papers.2,5
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